Adenoviral expression of NHERF-1 in NHERF-1 null mouse renal proximal tubule cells restores Npt2a regulation by low phosphate media and parathyroid hormone.
نویسندگان
چکیده
Sodium-dependent phosphate transport in NHERF-1(-/-) proximal tubule cells does not increase when grown in a low phosphate media and is resistant to the normal inhibitory effects of parathyroid hormone (PTH). The current experiments employ adenovirus-mediated gene transfer in primary cultures of mouse proximal tubule cells from NHERF-1 null mice to explore the specific role of NHERF-1 on regulated Npt2a trafficking and sodium-dependent phosphate transport. NHERF-1 null cells have decreased sodium-dependent phosphate transport compared with wild-type cells. Infection of NHERF-1 null cells with adenovirus-GFP-NHERF-1 increased phosphate transport and plasma membrane abundance of Npt2a. Adenovirus-GFP-NHERF-1 infected NHERF-1 null proximal tubule cells but not cells infected with adenovirus-GFP demonstrated increased phosphate transport and Npt2a abundance in the plasma membrane when grown in low phosphate (0.1 mM) compared with high phosphate media (1.9 mM). PTH inhibited phosphate transport and decreased Npt2a abundance in the plasma membrane of adenovirus-GFP-NHERF-1-infected NHERF-1 null proximal tubule cells but not cells infected with adenovirus-GFP. Interestingly, phosphate transport is inhibited by activation of protein kinase A and protein kinase C in wild-type proximal tubule cells but not in NHERF-1(-/-) cells. Together, these results highlight the requirement for NHERF-1 for physiological control of Npt2a trafficking and suggest that the Npt2a/NHERF-1 complex represents a unique PTH-responsive pool of Npt2a in renal microvilli.
منابع مشابه
Defective PTH regulation of sodium-dependent phosphate transport in NHERF-1-/- renal proximal tubule cells and wild-type cells adapted to low-phosphate media.
The present experiments using primary cultures from renal proximal tubule cells examine two aspects of the regulation of sodium-dependent phosphate transport and membrane sodium-dependent phosphate transporter (Npt2a) expression by parathyroid hormone (PTH). Sodium-dependent phosphate transport in proximal tubule cells from wild-type mice grown in normal-phosphate media averaged 4.4 +/- 0.5 nmo...
متن کاملDynamics of PTH-induced disassembly of Npt2a/NHERF-1 complexes in living OK cells.
Parathyroid hormone (PTH) inhibits the reabsorption of phosphate in the renal proximal tubule by disrupting the binding of the sodium-dependent phosphate transporter 2A (Npt2a) to the adapter protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), a process initiated by activation of protein kinase C (PKC). To gain additional insights into the dynamic sequence of events, the time cours...
متن کاملRetraction. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1.
Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydro...
متن کاملEzrin promotes functional expression and parathyroid hormone-mediated regulation of the sodium-phosphate cotransporter 2a in LLC-PK1 cells.
The sodium-phosphate cotransporter 2a (NPT2a) is the principal phosphate transporter expressed in the brush border of renal proximal tubules and is downregulated by parathyroid hormone (PTH) through an endocytic mechanism. Apical membrane expression of NPT2a is dependent on interactions with the sodium-hydrogen exchanger regulatory factor 1 (NHERF-1). An LLC-PK1 renal cell line stably expressin...
متن کاملNHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones.
The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006